6^2=x^2+2x^2-3^2

Simple and best practice solution for 6^2=x^2+2x^2-3^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6^2=x^2+2x^2-3^2 equation:



6^2=x^2+2x^2-3^2
We move all terms to the left:
6^2-(x^2+2x^2-3^2)=0
We add all the numbers together, and all the variables
-(x^2+2x^2-3^2)+36=0
We get rid of parentheses
-x^2-2x^2+36+3^2=0
We add all the numbers together, and all the variables
-3x^2+45=0
a = -3; b = 0; c = +45;
Δ = b2-4ac
Δ = 02-4·(-3)·45
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*-3}=\frac{0-6\sqrt{15}}{-6} =-\frac{6\sqrt{15}}{-6} =-\frac{\sqrt{15}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*-3}=\frac{0+6\sqrt{15}}{-6} =\frac{6\sqrt{15}}{-6} =\frac{\sqrt{15}}{-1} $

See similar equations:

| ⅓(2x-3)=7 | | 3m+10=27 | | 3x+0.6=-15 | | 8/n=12/30 | | X^2-8x-3X=0 | | 140+60x=1330 | | 7(e-3)=4+3(3e-5) | | 8(x+17)=-96 | | 0,4x+x=10000 | | 8–3(k+2)=2–3k | | 4x=3x-13 | | 7/2l+5=25 | | V(a)=(3-a)(16-4a)(a) | | 7(k-3)=3(k-5) | | 2t+3/2=14/2 | | 5(2x+2)=32 | | (x-5)^5=25 | | 3(n-3)=4n+1 | | 3y/11=15 | | 2d+d=4 | | 36+y=13 | | V(a)=(6-4a)(5-3a)(a) | | 5y+y=420 | | 10x=(17)1/11 | | -2=-1-x | | c/6*6=c | | 9=-6x-3 | | 15y+10=7y-10 | | 1=1x+2 | | 92+3x=5× | | 4x+9-x=2x+5 | | f(×)=ײ+9 |

Equations solver categories